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ABSTRACT 6}@
Ir; this report, the results of a theoretical and exgyeri-
mental study of the stability of an axially-loaded thin cylin-
drical shell under dynamic lateral pressures are presented
and discussed. The theoretical study uses nonlinear shallow
shell theory to investigate the coupling between an axisym-
metri¢ "ring-type" mode and the asymmetric "breathing
mode" into which the shell will initially buckle. It is shown
that, under certain conditions when the ring mode is dynami-
cally excited, it may be possible to induce buckling at a dy-
namic critical pressurethat is smaller than the static buck-
ling pressure for shells having R/h ratios = 200. A parallel
experimental investigation is also reported in which an elec-
trostatic loading system has been developed for the purpose
of producing the necessary high rates of loading on the cylin-
der. This electrostatic loading system was applied to the

testing of mylar cylinders.
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I. INTRODUCTION

In recent years, increasing attention has been devoted to the buckling
of shells under dynamic loading. The motivation for such investigations
arises from the concern of designers for the survival of their missiles
and spacecraft under conditions of dynamic loading. A common loading
condition for a cylindrical shell is a sustained axial compression and a dy-
namic lateral pressure. Such loadings can arise in missile silo launch,
buffeting at transonic speeds, re-entry, and from nuclear blasts outside
the atmosphere. The last is a situation which may entail very high rates

of loading.

The work reported herein is a continuation of an earlier studyl and
is concerned with the stahility of an axially loaded cylindrical shell sub-
jected to axisymmetric dynamic lateral pressure. A complete bibliography
of related studies of dynamic buckling would be somewhat long and no at-
tempt will be made to present one here. However, attention is called to
related work by Russian and by American authors in 2-22. These
works deal with stability of cylindrical shells under both periodic and

transients loads.

The primary response to the application of the uniform pressure is
an axisymmetric deformation. This inward radially uniform displacement
(a2 "ring-type"” mode) induces a circumferential hoop compression, and
when this stress reaches a critical value the shell buckles in one of the
characteristics asymmetric patterns (a diamond-shaped "breathing mode").
In our earlier studyl, it was shown that if the pressure is applied suf-
ficiently slowly, so that the rise time is large in comparison to the natural
period of oscillations of the ring mode, then the dynamic buckling pressure
will be the same as the corresponding static value. However, it was hypo-
thesized in this work (suggested by the work of Goodier and McIvor20 on.
~an infinite cylinder) that a loading time which is shorter than the period of
the ring mode would have a critical buckling pressure which might be
lower than the static value. Although not strictly correct, this may be
conviently described by saying that if the rise time of the load is sufficient

to "dynamically excite the ring mode" (considered as a single degree of




freedom linear system), then the dynamic pressure will be lower. It is

the purpose of the present work to examine this in greater detail theoreti-

cally with a nonlinear analysis. Experiments were also conducted using a

new loading technique which permitted the application of loads withrise times
shorter than the periodof the ring mode. In additionto the stability under

transient pressures, oscillatory loads were also studied experimentally.



II. SUMMARY OF RESULTS

A. THEORETICAL STUDY

1)

2)

3)

4)

5)

The possibility of a dynamic buckling pressure lower than
the static value appears to be a significant design factor
only for "thicker" shells (R/h =200, especially R/h <100)
and only under the conditions described below.

To show a dynamic effect, the likely static buckling
modes must be "tuned" to the axisymmetric "ring-
type" mode, i.e., the ratio of frequency of the buck-
ling mode to the frequency of the ring mode must be
about 1/2. The degree to which a mode is tuned is
critical.

For a shell to show a lower dynamic buckling pressure,
the dynamic critical pressure for at least one mode
must fall below the static buckling pressure of the

=1 ~11 MThiz 34 M a1 TN . B AT TN e B o
[=F ¥S W Ay ) AdLliiD LD 1LidUDbLiaALOAL Al 4 ;5\41 < I Qliiud 1auvyic o Ul
the text.

The rise times of the suddenly applied pressures must
be shorter than the half-period of the ring mode in
order to induce "dynamic buckling."

Initial imperfections affect the dynamic buckling pres-
sures to a lesser extent then the static values.

B. EXPERIMENTAL PROGRAM

1)

2)

A major effort was expended on the development of an
electrostatic system for applying the lateral pressures

to the test cylinder. The technique of electrostatically

loading structural models is new and its [easibility has
been established. Advantages offered by this new pro-
cedure are very high rates of loading (measured in
microseconds), possibilities for tailoring time histor-
ies and spatial distributions of loads, and operation in
a vacuum to allow the structural responses to be unim-
peded by a fluid in contact with the surfaces.

Tests conducted on very thin (R/h = 800) mylar cylin-
ders did not detect a difference in buckling pressures
between slow and rapid loading rates. This is con-
sistent with theoretical predictions. Thicker shells
could not be tested because the necessary pressures
for buckling of the cylinder could not be generated
electrostatically.
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III. THEORETICAL ANALYSIS

The object of the theoretical portion of this study has been to examine
the validity of the concept regarding "subcritical” pressures inducing buck-

ling if they are applied to the shell in a sufficiently short increment of time.
A. FORMULATION OF THE PROBLEM

For the purposes of the present study, we employ a nonlinear shallow
shell theory analogous to Marguerre's equations for slightly curved plates.
In terms of the radial displacement, w, and the stress function, F, appro-
priate equations have been given by Donnellz'3 in the form (see Figure 1 for

thé coordinate system used)

4 1
Dv (W - WI)+ KF,XX.‘.phw,tt - F’XXW’YY = F:YYW’XX+ ZF’XYW’XY - p(X, Y’ t)
(1)
1
—1—V4F = w,z -w, W, - 1Ew, - (WIZ -wp o W "' V1 (2)
Eh Xy XX Vy XX yxy ‘% :yy ,XX

where subscripts following commas denote differentiation. In Equations (1)
gnd (2), w is the total displacement, Wy denotes the initial state of defor-
mation, and D, E, h, R take on the usual meanings (see notation).
Equations (1) and (2) are nonlinear partial differential equations and
can be reduced to ordinary nonlinear differential equations by approximate
methods such as Galerkin's method or an energy approach using Lagrange's

equations. In this study, the latter method is employed and in consequence

of this, Equation (1) is not directly used.

The pressures considered here will be assumed to be distributed uni-
formly over the surface of the shell. Accordingly, the primary shell re-
sponse is a symmetric radial deformation. However, because of an
initially imperfect cylinder, nonsymmetric modes are also excited. One
of the objectives of the present study is to examine in detail the coupling
between these components of the radial deformation. It is also assumed
that the shell is sufficiently long so that the boundary conditions, though
still significant, are not critical and the shell is considered simply sup-

ported. In view of the preceeding, a solution to Equations (1) and (2)

-4-



is assumed to be representable in the form

X

= 1 : mmx
wix, y, t) = w_(t) sin 3=+ w(t) sin )

mmx _. ny .2
T sin g +w2(t) sin (L

(3)
where wo(t), wl(t), and wz(t) are generalized coordinates. The first
term in Equation (3) represents that part of the total response which is
due to the axisymmetric ring mode, and the second term represents the
breathing mode into which the shell will buckle initially. The last term
has been added so as to permit satisfaction of a periodicity condition on
the circumferential displacement. The initial deformation pattern of the
shell is assumed to be

_ . mmTx _. ny . 2fmmnx
WI(X’ v, t) = u, sin T sin 3¢ + u, sin \( T \I (4)

The second term in Equation (4) is included to satisfy periodicity

requirements,
Corresponding to Equations (3) and (4), the stress function F is ob-
tained by solution of Equation (2)

X ny

F . .. mmx .
5 AOW0 sin - + Al(w1 - ul) sin —— sin &~

2mmx
+ Az(w2 - uZ) cos —3
(m - 1)mx (m+ 1)rx|{ . ny
+ WOWll:B'l COS “——g— - B_‘_1 cos “—y———|sin ==

2 2 2mmx 2ny
+ (Wl - Uy )(Cl COS ——— + C2 cos )

L R
. 3mmx . mmx . ny 5
+ (vvlw2 - uluz).(B3 sin T - B1 sin L) sin 3 (5)
where
A 1 (L 2 A = - 1 (mm z
o  R\mw ’ 1~ R (VL




1 L 1 (= n
Ay = S—R(E) » By =X I(L) (R)
2 2 2 2
3 N3 R L ! 1 N1 R L
Cc. = 1 /n 2( L 2 C. = 1 fmw R\
1 Ti(ﬁ m) 2~ ﬁ(—f oy
_ [m 2 N = 11 2(m\ 2
N1 = (—L—) +n ’ +1 = (m ) (1-) + n

and

N,

) o

As previously stated, it is necessary to require that the expression
for the circumferential component of displacement be periodic, i.e., that
the shell remain closed. The last term of Equation (3) has been added to
satisfy this requirement. Its form has been selected such as to still per-
mit w to be zero at both edges of the shell. In regard to periodicity, the

reader is referred to Reference 24 in which the importance of this condi-

tion for dynamic problems is discussed.

The circumferential strain ey component of an element in the middle

surface of the shell is

trtalsy) C E‘H(Ny'va) (6)

v, w, 1faw) _ 1
‘yTaaww TRTZ

where v is the circumferential displacement component

N = a—? = circumferential membrane stress resultant
y
Ix
and
BZF
N = — = axial membrane stress resultant.
X ay




Solving Equation (6) for 9v/dy

av _ 1 (2%F  9%F)  w  1fawy? -
3y " ERlpZ ~ “ayZ) TR 23y (
Substitution of Equations (3), (4) and (5) into Equation (7) and setting to
zero the terms that are not harmonic in y leads to the result that
W 2 |w 2
2l _ n 1 (8)
u,| ~4R| 2
"1

The next step in the formulation is the computation of kinetic and

potential energies. The kinetic energy is given by

1 L f2mR o \2
T = -z—phjo «[o (31:’) dx dy (9)

where p is the mass density and integration is over the surface of the
shell. In writing Equation (9), only the energy of the transverse motion
is considered on the basis that when the shell buckles, the radial defor-
mation becomes much larger than the other two displacement components.
This is identical to considering only transverse inertia and makes the

formulation consistent with the shallow shell equations, (1) and (2).

Substituting Equation {3) into Equation (9) and integrating

2
2 Z 5 2
T = thw I +2phw I +th 4R Wlw 13-2ph 4RWWWI

(10)
where dots refer to differentiation with respect to time and
1 3 8m2
\Il = wRL s 12 = —Z"TTR.L s 13 = Z"TRL , and 14 = ;—;2—-—1RL

The total potential energy is the sum of the strain energy of the shell,

and the work done by the lateral pressure and by the axial load. The strain

energy is given by




L 2R 2
U = QZJO fo m L(vzw) +2(1 - v)(w?xy—w,xxw,yy)} dx dy

1 L r2rR 2 2 »
+ ﬁ‘](; j; (V F) +2(1 +V)(F,XY_F’XXF,YY) dxdy (11)

where subscripts refer to differentiation. The first integral is the strain
energy due to bending of the shell wall and the second is the contribution
from stretching. The details of the substitution of Equations (3) and (5)
into Equation (11) are quite complicated and no attempt will be made to
present details. Suffice it to record that substitution and integration leads

to a result having the form

T Al /. &_ \ Tt 2 21
_L) Lai o &ap bsf BP0 ii —t
= AJI+W— +I25) +S52A QI
[2 1 1[2 2 Rz) | 1Jz
FRKw wl+Kw +Kw’+K + K +G,w u’
1Yo 1 2V1 371 4V o V1 5 1 1Vt
3 3 2 2
- Gpwy Uy Gaw Wy 4 G4(W1u1 Wy ul) tGgwy
+ G, w 303 + G,w w.u 3 + (constant terms containing only u,)
671 "1 7V 1% g onty vy
(12)
where Kl’ e K5, Gl’ s G7 are extremely complicated coefficients,
and
mr 2 n2
o, - [l 2
1 L RZ

The work done by the uniform lateral pressure is

2TR /nz\ 2
= —j j wp dx dy = —4RLp(‘c)wO + TrRL(ﬁ p(t)w1 (13)
0 “0

There is one final contribution—that due to the axial preload. In this

study attention is restricted to the initial stages of instability, in which

-8-




case, the work done by the axial load when the shell deflects under the

lateral pressure is

L r 21R 2
_ o} du 1/ow

where the initial axial stress induced by the axial load P is

¢ © = P
x  2wRh

Finally, application of Lagrange's equations

d [faT ) .
E(W)-a—“(T-U+wp+WA)—O, i=0,1 (15)
1

leads to the coupled nonlinear ordinary differential equations

. 2 2 2 4 . .
wO + WO(QO + alwl ) + o.zw1 + °'3Wl - c1.4(w1vv1 + Wl)

1 3 2
+ (Ys“l t 3y )Wl = -agp(T) - yyu)

(16)

y 2 2 2 2 2 2
Wl(l ¥ ‘38“’1) * Wl{[gl Y5y - ‘359(7)] tByw, BV, tB3WY

.2 . 3
+ (38w1 + ﬁ4wo - 3\(4u1w1 =Ygy Wl}

3 5 3 3
T Bewy FByWT = vouy - 2¥au ) Wod YUt -y W

where W, Wi, and u, have been non-dimensionalized with respect to

1 1
wall thickness, time is non-dimensionalized on the ring mode according

to

. 2
T = ct |, c = E/pRZ



and
4

1 + & (T __P _(m}
1 A 2TRhE |1

@)
i

QZ _ 1 mm\t + k NZ P m'n'2
2 T Z(T T 271 T ZaRmE\1
N1 1 -v
0. = 3kn4(1'r)4 1 1
17 2 )\ 2 7z
Ny Ny
0. = L k 2 3(1)4 4m? +2(1+v)11_n4(3)4
2 21 l_vz R \{ 4m2-1 le R £
mTZm-2 TZm+ 2
R . (m+1) 7 omoT
2 2
Ny Ni1
2 2
) (7)
+%n2_ J] 21 5 2m + . 2m
' N1 N_I(Zm - 1) N+1(2m + 1)
4 2 2
h m1r 2w mt
-(l+v)y2 2 (m - 1) +(——)‘l
RNz 1(zm-l) PRI |
2m 2 m 2
+7—— (m+1)° _Z + (——)
+1(2m+1)

-10-




1 12m 12m
v T T2
NSO IND (2m + 1)(4m - 1) N{ (2m - 1)(4m + 1)

1 2m 2m :}
B 2| 2 -T2
N1 N_H(Zm + 1) N_l(Zm - 1)

, 240+ V)m(lr_)z (m-1* (m+1)*
N2 VN @m+4 1)dm - 1) NI (2m - 1)4m+ 1)
4(1 + vim ('n'\ [ (m-l) (m+1) -l
) “\*J 2 1 N 2 1
N, LN(m-) +1(m+ )J
2 2 2 2 2
+(1+ v)(%) nZ 12r;1 2(rn +1)" + 9m ) Z(m -1+ 9m
N3 N, . (2m - 1)(4m + 1) N . (2m 4 1)(4m - 1)
+1 -1
+2m[(m+1)2+m2 (m-l) +rn
2 2z
N°| Ny (2m + 1) (Zm - 1)
_lh 2 4m®
T R 4m2 o1
41
T 37 Ek
= 4(12
4
T 4( 1 1
-1 Y41
nZ
= 8a , (34 = 2a4 ) [55 =

-11-



4 4 4 2
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2rRhE\ £

aNS® 41 - v

4
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J] NZ N7
3 1
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1
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1
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12m

+

12m

2m

N7_1(2m + 1)}(4m - 1)

2m

t—

Nil(Zm - 1)(4m + 1):|

1
+
NT[N%I(Zm 1) N (2m 4 1)}

u 2
+ z(1+v)(m“)n2 3 (m - 1) ) (o + 1)°
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2 2
F (L4 v)nl — 12m (31‘;’11T) + (m - 1)212
N, NS (2m 4 1)(4m - 1) 2
2 ' 2
) 2m (m'rr) + (m+ 1)2 T
NIZNi1(2m+ 1)[ L 22
2 2
N1 N_I(Zm - 1) J]
2 2
_ — 12m (31}117) + (m + 1)212_
N, N (2m - 1)(4m + 1) 2
2
h
k =
12R%
and
L
L=xr
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Clearly, Equation (16) is too difficult for an analytical solution and
recourse was made to a digital computer program in which a finite dif-
ference scheme was used having a variable step size. This step size was
continuously picked as part of the program so as to keep the pointwise

error within specified limits.

Before proceeding to discuss these computations, it is possible to
make some observations which will help in the understanding and inter-
pretation of the numerical results. If Equations (16) are linearized, and
the initial imperfections taken to be very small, then one obtains the set

of equations
w_ +Q 2W = -a.p(T) (17)
o o o 5

B PV B
‘v'v'l TWILNI - psp(I’T plwo't p4woj = v (1LD)

Equation (17) suggests that the initial response to the pressure is a
pure radial deformation* which, in turn, parametrically excites the breath-
ing mode (note that this requires an initial value for w, S0 that initial im-
perfections are required to trigger the phenomenon). In the case of a
slowly varying load, the inertia term in Equation (17) can be neglected and

the solution to Equation (17) is

%5
wo = __Q_—ZP(T) (19)

o
so that Equation (18) can be written as

B,a
W o+’ - Bgp(r) - 22 p(r)|w, =0 (20)
Q2

()

Equations (19) and (20) constitute the analysis previously carried out in

Reference 1. The critical linearized static buckling pressure is

This, of course, is consistent with the assumption in Equation (3).

-14-




Q1290‘2
(pcr) . . - 2 (21)
linearized Blas + ﬁSQO

and this was used in this investigation to estimate the critical pressure
under slow rates of loading. Numerical calculations indicated that
Equation (21) provides very satisfactory accuracy. Comparison with ex-
perimental results of Weingarten, Morgan and Seide,27 for buckling under
hydrostatic pressure also indicates reasonably good accuracy. It also
gives values consistent with experimental results of Reference 1.
Equation (21) does not contain the effects of initial imperfections, but

doing so leads to the result that

S%ZKL? —ﬁlYlulz
(pcr) A — (22)
linearized [31a5 + [3590

In using Equation (21) or (22), the quantity of interest is the smallest
value of P, The usual procedure for finding this is to examine all the
possible buckling modes and pick that combination of (m, n) which mini-
mizes P, This minimum value is the critical buckling pressure for the
shell and the corresponding values of (m, n) determine the mode into which

the shell will buckle, i.e., the "buckling mode."

When the pressure is dynamically applied, such as an instantaneous
jump to a value P, then the solution of Equation (17) (for this step pres-

sure) is

a.p
w o= - 5O(l-cosQ‘C) (23)
o QZ o

o

Substituting Equation (23) into Equation (18) yields

w, + (a - 2q cos Qo’c)w1 =0 (24)
where
Q2 2+
Q- g2 st TP
1 92 o
o

-15-



and

B,a

_ 175
2q = P\ —7 * aghy
Q
o
. . . . 28 . .. . . .
Equation (24) is Mathieu's equation™ = indicating that in the linear

theory, stability under suddenly applied pressures is of the Mathieu type.
In this type of parametric resonance, the most important unstable region
occurs for Ql = (1/2)90. This implies that the modes into which the shell
is most likely to buckle dynamically are those modes which have their
natural frequencies equal to about one-half of the frequency of the ring

mode.

On the basis of this linearized analysis, attention will be focused on

those modes which are "tuned" to the ring mode as indicated above.
B. NUMERICAL CALCULATIONS

In the numerical calculations, the suddenly applied pressure is
represented by the "ramp-step" pre: ure-time curve of Figure 2a, for
which T is the nondimensionalized rise time and P, is the eventual mag-
nitude of load. The limit T — 0 represents a load which is instantaneously
applied, and a large ™ corresponds to a slow rate of loading. Also con-
sidered briefly is a "rectangular" pulse, Figure 2b, characterized by
the instantaneous application of pressure which is maintained at P, until
time T, when it is suddenly removed. The time T, is the duration of the

2

pulse, and the limiting case T,— 0, represents a purely impulsive load.

2
Results were obtained for two classes of shells., The first was a
very thin shell having a length equal to 8 inches, a radius of 4 inches,
and a thickness of 0. 005 inch, which is subjected to a 30 pound axial load.
These numbers correspond to the cylinder which was tested in a series
of laboratory experiments. The second group of cylinders had L/R =1
with R/h varying from R/h = 200 down to R/h = 50, There was no axial
load in this case. In both sets of calculations, the shell material was
mylar with E = 0. 735 x 106 psiand (E/p)l/2 =7.53 x 104 in/sec. Unless

specifically stated otherwise, u, has been taken as 1 percent of the thick-

1
ness, i.e., u, = 0.01. Emphasis during the numerical work has been

placed on determining trends rather than data for detailed design curves.
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1. Determination of "Buckling"” and the Existence
of "Dynamic Buckling"

In all cases buckling was determined as that value of Py for which
the character of the resulting motion abruptly changed from a state of
small or moderate deformation to one of large deformation.* Typical
examples of this are presented in Table 1 and graphically illustrated in
Figure 3 for the ramp-step pressure loading. The values Ty = 0.001 and
50 represent fast and slow rates of loading, respectively. Inspection of
Table 1 indicates that the modal critical pressures for the mode m = 7,
n=111is P, = 1,56 when the load is applied very slowly, but decreases
to P, = 0. 71 if the pressure is very suddenly applied. Thus, the shell
will buckle in this mode at a lower pressure if the loading rate is fast
enough. This result is analogous to results obtained by Budiansky and
Roth25 who found a decrease ot 1/ 3 tor a shallow spherical shell. Hoif

2
and Bruce 6 found a decrease of 22 percent for a slightly curved bar.

In contrast, there is no difference in buckling pressures for the
mode m = 1, n = 10, both giving values of 0.0118. It is of interest to
observe that Equation (21) predicts static buckling pressures of 1.61 and
0.0117, which indicates that the jump to large deformations is a valid

criteria for buckling.

The mode (7, 11) has for the ratio of the natural frequency of its
small oscillations (Q ) to the corresponding frequency of the ring mode
(Q ) a value of 0,468, and the mode {1, 10) has Ql,g = 0. 036. The above
critical pressures suggest that if the breathing mode is "tuned" * to the
ring mode, then the pressure required to buckle a cylinder in that mode
when the pressure is very suddenly applied may be less than the corre-
sponding critical pressure under static loads. In contrast, those modes
which are not tuned (such as m = 1, n = 10) will not show appreciably

different dynamic and static critical pressures. Comparison of the

modal buckling pressures for these two modes clearly indicates that the

A
b

25 . :
A similar criteria was used by Budiansky and Roth > in their study of the
axisymmetric dynamic buckling of a clamped shallow spherical shell, and
by Roth and Klosner22 who studied a thin cylinder under a sudden axial load.

sk

"Tuning" will mean a frequency ratio of about 1/2 as per linear theory.
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shell will buckle in the (1, 10) mode rather than (7, 11). As regards the
overall shell stability the critical buckling pressure for the shell conse-

‘ quently will not indicate any dynamic effect. Only if the decreased pres-
sure for the tuned mode falls below that of the untuned mode could the
shell buckle at a smaller dynamic pressure. In this situation, the initial
dynamic buckling mode would be different from the static one. Since this
study is restricted to the initial stages of buckling, it is not possible to
comment on the final post buckling configuration under conditions of slowly
or rapidly applied pressures.

Table 1. Maximum Amplitude of Response for Typical Modes
for R/h = 800, L/R = Z, P = 30 Pounds, u, =0.01

Mode Ql T P, W emax
0.010 0.054
G.011 0.137
0.0115 0. 499
50 0.01175 0. 600
0.0118 6.63f%
0.012 17.0
m=1,n=10 0.036 (P__) . = 0.0118
cr'static
. 0.010 0. 046
0.011 0. 109
0.001 0.0115" 0.248
0.0118 6.56%F
0.012 16.98
(Pcr)dynamic =0.0118
1.50 0. 246
1.55 0.543
1.556 0.649
50 1.5625 24, 4%
1.575 24,5
1. 70 24,6
m=7,n=11 0.468 (Pcr)static ~ I.56
| 0.60 4,03
! 0. 70 4.45
0.001 0.707 4, 81
0.715 24, 4%%
0.75 25,7
0. 80 24,2
(Pcr)dynamicg 0.7l

o,

“went unstable at T = 160
. mzwent unstable at T = 140
T

went unstable at T = 154

~-18-



These preliminary results clearly show the possibility of a
"premature" dynamic critical pressure, but also show the limitations
on its being a significant design consideration. It would appear that this
phenomenon is practically important only for those shells having likely
buckling modes which are tuned to the ring mode. As we shall presently

see, this restricts attention to thicker shells.

Before proceeding, it should be remarked that the mode (1, 10)
was picked in the above computation because it was that mode which had
the smallest static critical pressure as determined from Equation (21).
The mode (7, 11) was chosen because preliminary tests indicated that the
final buckled configuration had n = 11 circumferential waves. The mode
with n = 11 having its frequency approximately half the ring mode fre-
quency has 3-1/2 axial waves (m = 7) and it was decided to determine the
existence of a lower dynamic critical pressure using this mode. It was
later found that the mode (1, 36) showed a more striking effect (see Table 4),

but parameter studies had already been started on (7, 11).

2. Characteristics of the Phenomenon

Having established the theoretical existence of a "dynamic
buckling" phenomenon, it is of considerable interest to examine its
character in more detail. Of prime interest is the effect of the rise
time of the load, i.e., how fast must the load be applied so that the

shell will buckle at a smaller critical pressure?

Figure 4 shows the result of varying the rise time T for the
mode (7, 11). The abscissa represents the extent to which the loading
has a dynamic character. If one considers the ring mode from the point
of view of Equation (17), and takes p(T) as in Figure 2a, the linearized

ring mode response is then

w_ = -y [1 - n cos QOTJ (25)

where
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For a rise time Tl —> 0, 1 —» 1 and this is the maximum dynamic
effect created by the sudden application of the external pressure. For
very slow rates of loading, T, > and n —> 0. This is the case of static
loading. As shown in Figure 4, there is no decrease in critical pressure
unless the rise time is less than half the natural period (which is 7 in

terms of T) of the ring mode.

3. Initial Imperfections

Since most structures are not "perfect,"” i.e., do not conform to
the mathematical idealizations employed, it is also of interest to examine
the effect of deviations of the actual structure from the ideal. In the case
of shells, this is treated by the introduction of the concept of "initial
imperfections" which represent the degree by which the initial shape of
the shell deviates from a perfect cylinder. Fignre 5 shows the result
of a change in the initial imperfection on the buckling pressures for the
mode n =7, n =11, The imperfections uys have been nondimensionalized
on the wall thickness h. It is interesting to observe that imperfections
appear to have a much greater effect under slow rates of loading than
they do under high rates. Attention is also called to the tendency of
larger imperfections to bring the two curves together. This seems to
imply that a poorly made cylinder will show a smaller decrease in dynamic
critical pressure than would a better specimen, chiefly because of the

degradation in static buckling pressure.

4, Thicker Shells

A second set of calculations were made in a search for cylinders
of practical dimensions for which dynamic buckling considerations are
important. Based on the calculations described above, it was apparent
that the shell geometry must be such that the likely static buckling modes
are tuned to the ring mode and this implied that the R/h ratio must be
larger. Accordingly, a series of calculations were made for shells in

the range

50« R/h < 200




and having /R = 1. The general results can be extended to longer shells
if it is observed from the definition of Q and Q, in Equation (16) that an
increase in L/R implies a smaller R/h (i.e., larger k) in order to main-
tain the proper ratio between Q, and Q for a given mode. Again, buckling
has been taken as the change in deformation from small to large values,
as illustrated for a typical case in Table 2. Table 3 presents a summary

of the calculations for three rise times:

Virtually instantaneous L8 0.001

Fast, but finite, rise time T = 2.25

Slow T 50

1

The reason for inclusion of the intermediate value of Tl is the desire to

3 thot e o mrem mem V240 aY ot Ve
LiIC hal 18 IMiSIT a1riduil wian an indiaiitancous appii-

[

cation of load. The value T F 2. 25 is still quite fast for it represents

a rise time of about two-thirds the natural half-period of the ring mode.

In the case of a R = 4 inch mylar cylinder, this is a rise time of about

120 microseconds. Inspection of Table 3 indicates that buckling under
"subcritical" dynamic loads is a design consideration only for those shells
‘having R/h < 200, especially for R/h < 100. It does not appear that thinner
shells will show any difference in the shell's buckling pressure under fast

or slow rates of loading for the reasons discussed earlier.

In Table 3, the modes given are those modes having the smallest
critical pressures, although it was necessary to examine a number of

modes for each shell geometry.

Before leaving Table 3, it is noteworthy that the magnitude of the
decrease in critical pressure appears to vary with the frequency ratio
QI/QO. Further insight into this aspect can be obtained by inspection of
Table 4 and Figure 6 which clearly indicate the existence of an "optimum"
tuning between breathing mode and ring mode. This is due to the fact
that the phenomenon under study is one of parametric resonance (analysis
with the linearized equations lead to Mathieu's equations). The ring mode
is excited by the application of pressure and this in turn drives the breath-
ing mode parametrically. The sharp dip in the neighborhood of Ql/Qo =0.5

is directly related to the first unstable region in a stability diagram for
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Table 2.

Maximum Amplitude of Response for

Critical Modes for R/h=100, L/R=1

T Mode P w w
o 1 max 0 max
7.30 5.64 2,19
50 m=1,n=8 7.70 4, 80 1.07
7.705 16. 4 70
7.75 16.9 92
7. 80 16. 8 80
1.05 2.4 2.4
1.055 5.0 6.4
0.001 m=1,n= 12 1. 0625 12.9 91
1.075 12.9 102
'1.100 12.9 103
(pcr)static = 7.70, (Pcr)dynamic = 1.06
Table 3. Critical Pressures for Thicker Shells
. Critical Pressure
R/h QI/QO Mode Loading Rate, T, % of static
0.226 m=1,n=10" 50 1.25 -
200 0. 506 m=1,n=18 0.001 0. 15 12
2.25 1.25 100
0.260 m=1,n=8" 50 7.70 --
100 0. 469 m=1,n=12 0.001 1.06 14
2.25 1.66 21
0.290 m=1,n=7" 50 13, 86 -
75 0.533 m=1,n=11 0.001 1.12 8
2.25 1.15 9
0.350 m=1,n=6" 50 37.3 -
50 . 0.466 m=1,n=8 0.001 6.1 16
2.25 25.0 67

“Static buckling mode
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Mathieu's equationzs. The effect of the nonlinearity is to modify the
value of QI/QO at which the dip occurs and make it dependent on shell
geometry, as is evident in comparing Tables 3 and 4. Although damping
has not been considered in this study, inclusion of its effects would proba-
bly decrease the depth of the dip, thereby raising the critical pressures
under dynamic loads. In Figure 7 are plotted the static and dynamic
buckling curves which were used to construct Figure 6, and these curves
strikingly illustrate that although an individual mode may show a signifi-
cant decrease in dynamic buckling pressure, the shell will still buckle

as if under static load if the minimum dynamic buckling pressﬁre is
higher than the minimum static pressure. In Figure 7, the dynamic
buckling pressure of the mode (1, 36) is still higher than the static buck-
ling pressure for (1, 10) so that the shell will buckle in (1, 10) under both
and dynamic pressures. To have dynamic buckling occur, it is necessary
itor the dynamic buckling pressure of one of thé tuned modes 10 {all below
the critical pressure of the mode in which the shell will buckle under

statically applied pressures.

Table 4. The Effect of Tuning on Dynamic Buckling Pressure
for R/h = 800, L/R = 2, P = 30 Pounds

Mode Ql/Qo Pst pdyn pdyn/Pst
m=1,n=10 0.036 0.0118 0.0118 1.00
m=6,n=11 0. 396 1.15 1. 07 0.93
m=7,n=11 0.468 1.56 0.71 0.46
m=1,n=36 0. 490 0.178 0.015 0.08
m=6,n=9 0.499 2.62 0. 66 0. 26

Figure 6 also helps explain the apparent nonuniformity in the
behavior of the variation of the dynamic critical pressure with shell
geometry. It is apparent that each class of shell geometry has associated
with it a curve similar to the solid curve in Figure 6 and each mode of
that shell will have a frequency ratio corresponding to a point on the
curve (however, each point on the curve does not correspond to a shell

mode because the shell modes have integral values of m, n only). It
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would appear entirely possible that a given shell could have frequency
ratios that miss the deepest part of the dip and thereby not demonstrate
a difference in static and dynamic critical pressures to the extent that
another (and maybe thinner) shell might. This seems to be the case in
Table 3.

5. Time for the Buckling Process

From inspection of the numerical runs, it is possible to estimate
the time required for the cylinder to buckle in those cases when an instabi-
lity did occur. An interesting correlation with experimental observations
can then be made. The time at which buckling (i.e., large deformations)
occurred fell in a broad band which depended on the mode, shell geometry
and load. Generally speaking, however, it fell in the range 50 < 7 <250
which corresponds to buckling times of 0.003 <t <0.015 second. A verv
typical value was about T = 150 (t = 0. 008 second). This number seems
to be in good agreement with times observed by Tennyson'29 of 0. 006 second
for an axially compressed cylinder and by Evensen30 of about 0.007 sec-
ond for hydrostatic compression and 0. 004 for axially compressed cylin-
ders. While there is bound to be discrepancies in the exact values of the
buckling times because of difficulties in determining starting times for
the phenomenon, it is encouraging to note the agreement on the order of
magnitude. It is also of interest to note that these times correspond to

something on the order of 25 cycles of the ring mode.

6. Impulsive Loads

By use of the rectangular pulse in Figure Zb, preliminary com-
putations were made on the response of a representative mode to an
impulsive pressure. As with many of the numerical calculations, the
mode m = 7, n = 11 for the very thin cylinder was used. The result is
presented below in Table 5 and both critical pressure and critical impulse
are plotted in Figure 8. The dotted portion of the critical impulse curve

has been faired-in.
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Table 5. Stability Under Impulsive Pressures
R/h=800, LL/R=2, P=30 pounds,
m = 7, m=11

T2 Por Impulse Remarks
3.5 0.71 2.475 Essentially a maintained load.
1.0 0.715 0.715 -
0.54 1.01 0. 545
8 %(-), ‘Z{ gé 8 Zgg True impulsive loads.
0.05 10. 00 0.500.)

One can observe the well known result that a supercritical load
can be applied without leading to collapse if the load is removed sufficiently
soon. It is also interesting to note that in the case of very short durations,
the governing factor on buckling appears to be the impulse given to the
shell. A sirﬁilar curve was also obtained by Budiansky and Roth25 and by
Roth and Klosnerzz. The reader is r‘eminded that the rectangular pulse
used here has zero rise time, consequently the horizontal asymptote of
the critical pressure curve is the critical pressure for a suddenly applied

pressure rather than that for static loading.
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Iv. THE EXPERIMENTAL PROGRAM

During the experimental portion of the earlier programl, a 3 milli-
second rise time for the step pressures was obtained with a light-weight
specially designed evacuating piston which was essentially a high-frequency,
but long-stroke, loudspeaker mechanism. This loading rate was fast
enough to excite the buckling modes of an 8 inch diameter mylar cylinder,
but not fast enough to excite the cylinder's 3000 cps ring mode. In these
tests, it was observed that the dynamic critical collapse pressure was not

significantly different from the static value.

The principal objective of the present experimental program was to
devise an experimental procedure for exciting the ring mode and to look
r the di

£ P LT I Ry e e ar et Y Ty
10 C1 it COLLaPDC pPICOPULCTD tildl iiiigtit IFeolit,.

Two basic methods of achieving a loading rate fast enough to excite the
ring mode were evaluated at the beginning of this investigation. The first
was to accept the 3-millisecond rise time developed by air pressure load-
ing and to develop a cylindrical shell with a lower fing—mode frequency.

The other was to retain the thin-walled, cylindrical mylar test specimen
and to excite the 3000 cps ring mode with electrostatically applied radial
pressures. The elctrostatic-loading route was chosen for development
because 1) calculations showed adequate load capability for testing mylar
cylinders and showed more than adequate loading-rate capability, 2) no
practical isotropic material have an adequately low ring-mode frequency
could be found and composite structures (such as lead-shot filled jelly-like
plastics) which did have a low ring mode frequency do not simulate the thin-
walled type of structure that is of primary interest, and 3) extensive experi-
ence with mylar as a material for shell buckling experiments had shown it
capable of reproducible results during repeated buckling tests on the same
specimen, whereas the results using different specimens, regardless of
material, showed greater scatter. The repeatable buckling loads obtainable
with mylar specimens was considered of paramount importance for the
principal objective of determining whether the critical collapse pressure is

sensitive to rate of application of that pressure.
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A. Test Program

The actual test program can be detailed as follows:

1) With a dead-weight, high-inertia axial load, the critical
values of external pressure that caused collapse were
compared for the two cases of slow and fast rates of
loading.

2) The above tests were repeated with a low-inertia,
pPressure-actuated axial loading to determine if the
inertia of the axial load was significant.

3) Tests were also conducted with oscillating pressures.
Structural resonances were noted as were combinations
of frequency and peak pressures inducing collapse of
the shell.
These objectives were supplemented, once it was decided to use the
electrostatic-loading techniques, by the demonstration and evaluation of

this new method of dynamically loading structural models.

B. Test Results

The shell studied experimentally in this program was a mylar shell
with a length of 8 inches, a radius of 4 inches and a thickness of 0. 005 inch.
The axial loads applied before superimposing the radial pressure were
between 20 and 30 pounds and the imperfections were such that collapse
due to pure end load would occur at values. only slightly higher than these

loads rather than at the classical value of 70 pounds. -

The experimental results showed no significant difference in the criti-
cal buckling pressures when the rate of application of the overpressure
was changed from one that was too slow to a rate that was adequate to
excite a large dynamic overshoot of the ring-mode response. This result
was also true when the axial load was changed from a dead weight having

high inertia to the low-inertia end cap.

Although the above experimental results do not substantiate the hypo-
thesis that the dynamic buckling pressure can be smaller than the static
value, neither do they conflict with the theoretical results described in
Section III. For a smaller collapse pressure under dynamic excitation,
the theoretical results aré interpreted as requiring that the structure have
a "tuned"” mode with a dynamic buckling pressure that is smaller than

the static buckling pressure for the mode in which the shell buckles
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statically. The specimen tested experimentally did not satisfy this re-
quirement. Consequently, the experimentally determined absence of a
dynamic effect is consistent with, although it does not constitute verifica-

tion of, the theory.

Before proceeding to discuss the details of the experimental program,
it is noted that the electrostatically-applied oscillating pressure permitted
the detection of pure structural resonances in a vacuum environment.
Acoustic excitation, on the other hand, produces standing-wave resonances
of the cavity which are difficult to distinguish from the true structural
modes. These oscillatory pressure tests have thus demonstrated another
capability of the electrostatic drive system, but the method is not con-
sidered fully developed in its potential for various time and spatial distri-

butions of loading.

C. Development of Experimental Techniques

Experimental support during this program required development of a
pressurization system that would provide a very high rate of loading. As
noted in the opening discussion of the experimental program, it was de-
cided to apply the pressure electrostatically. The required techniques
include the application of electrodes to the surfaces being loaded, the
arrangement of driving plates, the elimination of air loading that might
impede the structural responses, and the provision of d-¢ and a-c power

to control the electrostatic loading of the structure.

The first electrostatic drive system designed was a three-plate,
so-called "push-pull" arrangement, as shown in Figure 9. This system
was assembled before its supposed advantages were found lacking on com-
pletion of the analysis briefly outlined in the Appendix. Inability to observe
the specimen was a price considered warranted only if an electrostatic
pressure nearly constant with displacement could be produced over a
large portion of the annular gap between the fixed outer electrodes. Since
the system did not appear to be acting as a "push-pull” system at all, an
electrode was attached to a balance and arranged to be driven by either
the single-ended or the "push-pull" method. The single-ended system
performed as expected; but the three-plate system failed to provide a

nearly constant force over any portion of gap between the outer electrodes.
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The above mentioned analysis then showed this indeed to be the case.
Since neither method could provide the desired constant force, the simpler
single-ended system shown in Figure 10 was chosen for further develop-
ment and for use in the experiments. In Figure 11, the final specimen
assembly is shown with dead-weight axial load, adjustable stops for con-
trolling the head travel during collapse, and a lifting rnechanism for

raising the specimen head when operating inside a vacuum system.

The electrostatic loading rate is controlled by the time comstant of
the specimen capacitor in series with a resistor inserted in the line
through which the capacitor is charged when it is switched across a d-c¢
power supply. The specimen capacitor in parallel with stray capacitance
was low enough to allow the series resistance to damp out all oscillation
due to line inductance while still keeping an adequately short time constant.
On closure of the charging switch, the specimen voltage, V, rises expo-
nentially to 63 percent of the terminal voltage in the time-constant period;
since the generated force is proportional VZ, the loading force reaches
40 percent of its terminal value in this time. In the specimen assembly,
the combined capacitance being charged was 0.00046 pf. The series
charging resistor for rapid loading was 0.1 megohm to give a time con-
stant of 46 microseconds for the fast rate of loading. Changing the resistor
to 21 megohm gives a 9700 microsecond rise time and this was used for
the slow loading rate. After development of a non-arcing charging switch,
it was possible to confirm this charging time by measuring the charging
current as shown in Figure 12. The circuit used in applying the pressure

is given in Figure 14.

Although the rate of application of the elctrostatic forces can be
quite fast, the effective structural loading follows this rate only if the
air surrounding the specimen is sufficiently rarefied to prevent buildup
of an opposing pressure due to the effective mass of the surrounding air.
A moderate vacuum of the order of 10_3 mm of mercury absolute pres-
sure is adequate to prevent excess back pressure; diffusion pump tech-
nigues producing absolute pressures of about 10_5 mm of mercury were
necessary, however, to prevent electrical breakdown in the pressure of
the outgasing of the mylar specimen and the other materials used in the

test apparatus. The electrical breakdown difficulties were solved with
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the aid of a materials and spacing model that was tested in the vacuum

chamber before the final apparatus shown in Figures 9 and 11 was

constructed.

The specimens were prepared as butt-welded mylar cylinders with a
vacuum deposited aluminum coating on the inside of the cylinder. The ends
were embedded in rings with a low temperature bonding alloy. The lower
end ring was fastened to a very heavy plate serving as the vacuum cham-
ber table and the upper ring had supplementary ring weights fastened on
during the tests with deadweight, high inertia axial loading. Axial load-
ing was also applied to the top ring with a thin pressure chamber as
shown in Figure 13. A calibration of specimen condition was obtained by
slowly loading the top cap with lead shot until collapse occurred. At lower
axial loads, calibrations were also obtained by slowly applying a differen-

tial air pressure.

The oscillating pressure was applied to the shell structure by means
of the circuit shown in Figure 15. To avoid frequency doubling and ex-
treme distortion, the a-c drive was superimposed on a d-c bias to apply
one polarity of varying magnitude. Since the force varies as the square
of the voltage, the resulting oscillating force has sharper peaks than the
sinusoidal voltage change and is characterized by a sinusoidal oscillation

with 50 percent second harmonic distortion.

With a controlled driving voltage, the electrostatic loading system
is extremely versatile for use in performing investigations of the dynamic
behavior of structures. By varying the electrode spacing and area, this
system offers the potential for controlling the spatial distribution of
forces applied to structural surfaces. The forces are limited, however,
and attempts to improve this situation lead to problems with charges held
on multilayered dielectrics. Since the electrostatic loading system will
operate in a vacuum, it can provide structural loading in the absence of
any heavy fluid in contact with the structure. This feature, in combina-
tion with the capability of applying a load in a few microseconds, war-
rants the consideration of electrostatic loading for investigations of the

dynamic response of structures.
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D. Test Procedure and Results

The test specimens were 8 inch diameter by 8 inch long cylindrical
shells made of 0.005 inch thick mylar loaded axially and then subjected
to an axisymmetric radial overpressure. The radial pressure was de-
veloped by the electrostatic attraction force between the two plates of
a capacitor when it is charged by connecting it to a source of high voltage.
One plate of the capacitor was an aluminum film that was vacuum deposited
on the inside of the mylar specimen; the other plate was an inner alumi-
num cylinder concentrically spaced a short distance from the specimen
plate and insulated from it. The loading rate for the pressure was changed
from very high to very low values and back by changing a resistor which
controlled the time required for the specimen capacitor to be charged up

to the potential of the high voltage supply.

A typical test sequence for a given loading rate consisted of 1) raising
the supply voltage to some desired load test value while the specimen is
held at zero potential with a shorting circuit (position 1 of S, in Figure 14),
2) switching the specimen capacitor across this preset source of potential
(position 2) so that it is charged through the rate controlling resistor
(for 46 or 9, 700 microsecond time constant) and held at the voltage con-
trolled radial pressure for three seconds, and'3) switching back to posi-
tion 1 to release the pressure while the supply voltage is being raised to
a higher value for the next shot. The sequence was repeated at 30 second
intervals with higher and higher voltage settings until specimen collapse
occurred. With no change other than altering the resistor controlling the
loading rate, the sequence was then repeated for comparison of the volt-
ages required to cause collapse. The detailed results are briefly given

below.
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1. Dead-Weight Axjal Load with Radial Pressure Steps

Preliminary tests were initially made at atmospheric pressure
and later in the vacuum chamber. Under pure axial, the specimen col-
lapsed under loads ranging from 30. 50 to 35.07 pounds. At an axial load
of 28. 48 pounds, the first collapse under electrostatic loading was ob-
tained by slowly raising the d-c voltage across the specimen capacitor
to 10 kilovolts. However, a repeated test did not produce a collapse
even with the voltage raised to 20 kilovolts. Application of the voltage
in steps was then established as the test procedure for the slow, as well
as the fast, loading. The first series of tests for which a comparison
can be made between slow loadings (9700 microsecond time constant)

and a fast loading (46 microsecond time constant) is summarized below.

Series Collapse Pressure,
1 kilovolts
Description Fast STow
Test No. Loading | Loading
Rate Rate
1 At atmospheric pressure, with slow
loading rates, and with a 28. 48 pound
axial load, the a-c voltage was applied
in steps of 4, 6, 8,9, 10, etc., kv until
collapse occurred at 10
2 With a 28. 57 1b axial load, collapse
occurred at 12
3 at 12
4 at 11
5 at 13
6 and at ' 15
7 In the vacuum chamber, with the fast
loading rate, repeated Test 1 for col-
lapse at 16
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The collapse in the vacuum chamber terminated in a l-vertical

by 9-circumferential wave pattern that could not be released from con-

tacting the inner electrode with the lifting mechanism.

The above com-

parison made vacuum conditions for both the slow and the fast loadings

appear warranted.

Due to specimen deterioration, axial loading now caused collapse

at 22. 34 and 23. 89 pounds, and a newdead-~weight load of 22. 81 pounds was

prepared for the continued tests as follows:

Series Collapse Pressure,
2 kilovolts
Description Tast STow
Test No. Loading Loading
B Rate Rate
1 In vacuum and with a 24, 81 1b axiail
load, the d-c voltage was applied in
steps of 4, 6, 8,10, 12, 13, 14, 15, etc.kv
until collapse occurred at 14
2 Repeated 1 for collapse at 12
. 3 and at 13
4 Repeated 1 for collapse at 13
5 at 12
6 and at 13
7 Counterbalanced for overnight rest
without axial load. At atmospheric
pressure, repeated l for collapse at 14
8 at 15
9 and at 15
10 Started vacuurm pump and lowered pres-
sure until a vacuum-condition tester™
required 30 kv before electrical break-
down. Repeated | for collapse at 10
(Specimen stuck to inner electrode and
therefore required releasing the vacuum)
. “3/8 inch spark gap with 1/32 inch radius tip facing a flat plate.
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Series

Collapse Pressure,

2 kilovolts
Fast Slow
Test No. Loading Loading
Rate Rate
11 To the check effects of vacuum pump
vibration, atmospheric pressure tests
were made with the pump shut down for
collapse at 8
12 at 8
13 and at 8
14 Repeating above test at atmospheric
pressure but with pump running against
a stopped line, collapse occurred at 8
15 at 8
16 and at 8

A deterioration of the specimen is noted in the above series of

tests but the first six shots show no signiﬁcé.nt difference between fast

and slow loading rates.

Since buckling appeared stabilized at the lower voltage, fast and

slow loadings were run in the vacuum chamber as follows:

Series Collapse Pressure,
3 kilovolts
Description Fast STow
Test No. Loading Loading
Rate Rate
1 Repeated test as in Series 2 No. 1 for
collapse at 8
2 and at 8
3 Repeated 1 for a collapse at 8
4 at 6
5 at 6
6 at 8
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Series Collapse Pressure,
3 kilovolts
Description Fast STow
Test No. Loading | Loading
Rate Rate
7 On another pumping cycle necessitated
by specimen clinging to inner elec-
trode, repeated 1 for collapse at 8
8 Repeated 7 for collapse at 8
9 and at 10
10 On the final vacuum cycle before the
failure of this first specimen the
22. 81 pound axial load was retained
and the d-c voltage was applied in steps
of 2,4,6,8,9, etc., kv, until collapse
occurred at R
11 at 9
12 at 9
13 at 9
14 at 9
15 at 9
16 at 9
17 at 9
18 at 9
19 at 9
20 at 9
21 and at 9
22 Continuing as at 10 above but with
closer steps of 8 and 8.5 kv, collapse
occurred at 8.5
23 at 8.5
24 at 8.5
25 at 8.5
26 at 8.5
27 and at 8.5
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This series of tests again shows no variation in results during
repetitive tests with no change other than that of altering the charging
resistor for either the fast or slow pressure-loading rate. For this
specimen and loading condition, it is concluded that there is no decrease

in the critical collapse pressure under a loading rate high enough to excite

the axisymmetric ring mode.

2. Axial Force on Low-Inertia End Cap with Radial Pressure Steps

The equipment was altered by changing the dead-weight, high-

inertia axial load to a low-inertia end ring in which the axial force is

developed with a large-diameter, thin pressure chamber.

The specimen

collapsed with a pure axial load due to a 3-pound end mass and air pres-

sure equivalent to 17. 1 inch of Convoil-20 (specific gravity 0. 865) applied

to the pressure chamber.

16. 2 inches during the following series of tests.

The axial-loading air pressure was reduced to

Series Collapse Voltage,
5 kilovolts
Description Tast STow
Test No. Loading | Loading
Rate Rate
1 During the first vacuum cycle and with
the axial load indicated above, the d-c
voltage was applied in steps of 4,5, 6,
etc., kv, until collapse occurred at 8
2 and at 8
3 Repeated 1 (2nd vacuum cycle) for a
collapse at 7
4 at 9
5 at 9
6 at 9
7 at 9
8 and at 9
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Series Collapse Voltage,
5 kilovolts
Fast Slow
Test No. Loading | Loading
Rate Rate
9 Repeated 1 (3rd vacuum cycle) for a
collapse at 8
10 at 8
11 at 8
12 at 3
13 at 10
14 at 10
15 at 10
16 and at 10
17 Repeated 1 (4th vacuum cycle) for a
collapse at 8
18 at 11
19 at 10
20 and at 11
The aluminum coating began to peel off
the mylar specimen near the end of
this cycle.

For the low-inertia axial loading condition, no significant differ-
ence in the critical collapse pressure is found due to a high pressurizing

rate.

3. Dead-Weight Axial Load with Oscillatory Pressure

An oscillating radial pressure was obtained by applying a d-c
voltage with superimposed a-c having an amplitude that was equal to or
less than the d-c value. This pulsating potential of one polarity, produced
a pulsating inward radial force on the thin mylar shell. It was varied in
frequency and amplitude to find various combinations causing collapse of

the structure. The results were not sufficiently consistent during eight
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vacuum cycles to establish a detailed description of the behavior but it
is significant that collapse was obtained at peak potentials both below
and above the current d-c step voltages causing collapse. This is con-

sistent with results obtained in Reference .

By direct transmission through the walls of the vacuum chamber,
resonant frequencies of the driven cylindrical specimen were detected.
The low pressure of about 10_5 mm of mercury allowed this detection of
structural resonances without the influence of cavity resonances of a
gas-filled chamber. With a 27.19 pound dead-weight axial load (about
95 percent of the maximum allowable) on the 8-inch diameter by 8-inch
long cylinder made of 0. 005 inch mylar, resonances were detected at
73, 83 (strong), 94, 105, 120, 162 (strong), 183,210, 246,317,472, 800, 890,
1190, 1270, 1500, 1860, 2130, 2330, 2550, 2670, 3030, 3180 (strong), 3330,
3500, 3640,4030, 4320, 4600, 4830, 5000, and 5580 cps.
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V. CLOSING COMMENTS
It is to be noted that all objectives of the study have been achieved.
The existence of "dynamic buckling" has been explored both by a theoreti-
cal analysis and a laboratory test program. Solution of the usual non-
linear shallow shell equations has lead to the conclusion that in a set of
somewhat restricted circurnstances, it may be possible to buckle an
axially-loaded cylindrical shell at a pressure smaller than the static

buckling value if the pressure has a sufficiently fast rate of loading.

Experiments have failed to detect such a difference in buckling pres-
sures, but these tests could only be conducted on cylinders that theory
predicted would not show the desired effect. Since it was necessary to

pursue both the theoretical and experimental programs simultaneously,

ne nf tha Antivre
ces CI te tirg

thig state of affairs wags not realized until the closin

program; well after commitments had to be made on the experimental

program.

The concept of electrostatically loading a structural model for experi-
mental dynamic response studies has been proven feasible and is certainly
worthy of further study. As with any new technique, however, there are
limitations and unexpected difficulties. There is a maximum voltage at
which one can operate and this, of course, places limits on the pressures
that can be generated and consequently on shell configurations that can
be tested. Because of these limitations, it was not possible to test the
thicker shells that theory indicates should show a dynamic effect. Even
though the test results that were obtained were consistent with theory,

the theory still lacks positive confirmation.

Additional avenues for theoretical studies can also be suggested.
Evensen in24 mentions that in his work with rings there is a strong tend-
ency for the nonlinear vibration of one "breathing" mode to couple with
another when the amplitude is larger than a critical value. Perhaps
a three-mode study (ring mode plus two breathing modes) may prove
interesting. Damping is a quantity that is present in all structures but
its effect was not included in this study because of the viscoelastic nature
of the damping in mylar cylinders. However, an appraisal of its effects

would be of some interest. Most likely, the effect of damping would
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reduce the dynamic effect by increasing the dynamic buckling pressures
in a fashion analogous to the damping (iso-p) effect on the Mathieu stability
diagrams. A third possible modification would be the inclusion of the

variation in electrostatic force with displacement.
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APPENDIX

ANALYSIS OF ELECTROSTATIC DRIVE SYSTEMS FOR
DYNAMICALLY LOADING STRUCTURAL SURFACES

When the two-plate, single-ended and the three-plate, so-called
"push-pull" elr ..rostatic drive systems are given the same plate spacing
and allowed the same maximum potential difference that might cause
electrical breakdown, analysis of these systems as parallel-plate capaci-
tors indicates that they produce the same value of a step-function in force
and that neither system produces a force that is at any point insensitive
to a change in the spacing. This analysis has shown that the "push-pull"
system does not produce a nearly constant electrostatic pressure over a
relatively large portion of the tatal annular gap hetween the fixed electrodes
as first predicted. This prediction was based on the literature dealing
with electrostatic loudspeakers and on the implications of the term "push-
pull." The force on a small isolated test charge is, in fact, constant
throughout a uniform electrostatic field. But when the charge isolated on
the central plate of the three-plate electrostatic loading system is of
sufficient magnitude to produce the required step-function loading when
the outer plates are connected to an allowable potential difference, the
determination of the variation in force with displacement of the specimen
plate must take into account the capacitance variation on each side of the
plate and the effect of the induced charges. This results in a linear force
variation of considerable magnitude during the excursion of the center

plate.

The above results are derived from the basic equation for the electro-

static force on the surface of a conductor. On such a surface carrying a

charge ¢ per unit area, there is an outward force per unit area31’ 32
2
oo
f = {
f e (Al)

where ¢ is the absolute permittivity of the medium outside the conductor
and & determines whether the system of units33 used is rationalized such
that the w terms are contained in the equations for problems dealing with

c{rculary symmetry rather than with rectangular configurations. The
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direction of the force is always outwards; there is consequently never a
push against the surface of a conductor. This equation suggests that the
term "push-pull" is somewhat inappropriate when applied to any system
designed to apply a step-function or steady single-direction force to a

structure by electrostatic means.

In Equation (Al), the absolute permittivity ¢ is given by

€ =€ € (AZ)

where € is the absolute permittivity of free space, i.e., in a vacuum,

and €. is the relative permittivity or dielectric constant of the medium
adjacent to the conductor. These dimensionally homogeneous equations

are applicable for any consistent system of units. In air at one atmosphere,
€. = 1.0006; and for the unrationalized electrostatic C.G.S. system of

units (e.s.u.), 6 = 4m, €= 1, ¢ is in e.s.u. of charge per cmz, and the

. s s 2
force per unit area is in dynes per cm .

In considering the means of obtaining the charge density o, we make

use of the definition of the capacitance between two conductors
C =Q/V (A3)

where V is the potential difference between the two conductors and Q is
the charge carried by either conductor, i.e., + Q on one conductor and
-Q on the other.34 For the parallel-plate capacitor of uniform separation,
the charge Q is evenly distributed over the area A, the surface density of

charge on either conductor is then
c=Q/A (A4)
and the capacitance is35
C=c¢Afbt (A5)

where t is the separation distance between the closely spaced portion of
the conductors. From the above relations, we then obtain the attraction
force per unit area between the plates of a uniformly spaced parallel-plate

capacitor as
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<

(A6)

Hh
n
o
O,NI
o

In using these additional dimensionally homogeneous equations with the

consistent electrostatic C.G.S. system of units (e.s.u.), Q is in e. s.u.
of charge (1 e.s.u. charge unit = 3 x 10-9 Coulombs), V is ine.s.u. of
potential difference = 300 volts), A is in cmz, tisincm, C isine.s.u.

-11

of capacitance (1 e.s.u. of capacitance = 9 x 10 Farads), and again

the force per unit area is in dynes per cm2 (1 dyne per cmz =1.45x
10"5 psi).

We can convert the basic force equation to one using a particular
choice of practical units and obtain the attraction force between the plates
of a uniformly spaced parallel-plate capacitor as

2

-12 E
P =0.994 x 10 — (Aba)

d

where P is in psi, E is the potential difference between the plates in volts,
and d is the plate separation in inches. This equation is not dimensionally

homogeneous and is valid only for the stated units.

In the application of Equations (Al) through (A6) to electrostatic
loading systems, it is constantly recognized that the conductor plates
have two sides and that the outward surface forces on both sides must be
determined to evaluate the net electrostatic loading on the structure.
With the specimen forming or supporting the center plate conductor of a
three-plate electrostatic drive system, the capacitance and forces on
both sides are significanf in magnitude and the structural loadings is the
.difference between the forces on the two surfaces of the conductor. With
the speciment as one conductor of a two-plate system, the capacitance

between the plates will likely predominate to such an extent that the capaci-

tance to earth and the outward force on the exterior face of the conductor

is negligible. Also, as in the design shown in Figure 10, it may be
possible to make this exterior force zero by keeping the specimen plate

at ground potential.
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SYMBOLS

AO’ Al’ A2 Constants, see Equation (5)
Bl’ B:t:l’ B3 Constants, see Equation (5)
Cl’ C2 Constants, see Equation (5)

1

c=x E/p Circular frequency of ring mode
D = Eh3/12(1-v2) Shell flexural rigidity
E Young's modulus
¥ Stress function
f Electrostatic force
Gl’ e, G7 Constants, see Equation (12)

h Wall thickness

Kl’ , K7 Constants, see Equation (12)
k = hZ/IZR2 Nondimensional thickness parameter
L Length of shell
t = L/R Nondimensional shell length
m Number of axial half-waves in breathing mode
Nl’ N;tl’ N3 Constants, see Equation (5)
Ny’ NX Shell membrane stress resultants, Equation (6)

Number of circumferential waves in breathing
mode

P Axial load

P Lateral pressure
P.. Critical pressure, pressure at which buckling
o occurs
p(T) Pressure-time (nondimensionalized) history

R Radius of shell

T Kinetric energy, Equation (9)
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SYMBOLS (Continued)

Time
Strain Energy., Equation (11)

Initial asymmetric component of radial deformation
(nondimensionalized to thickness)

Shell displacement coordinates

Initial state of deformation

Shell coordinates

Work done by axial force, Equation (14)
Work done by lateral pressure, Equation (13)

Voltage

Constants, see Equation (16)

Constant, see Equation (26)
Absolute permittivity

Constant, see Equation (25)
Poisson's ration, takenas v = 0.3
Mass density of shell material
Charge density

Initial axial stress
Nondimensionalized time

Rise time for ramp-step pressure
Duration of impulsive pressure
Frequency parameter for ring mode, Equation (16)

Frequency parameter for breathing mode,
Equation (16)
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Figure 9. Schematic Cross Section of Developmental Three-Plate
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-56=




LOADING WEIGHT

\

METALLIZED/
MYLAR TEST
CYLINDER

\ SN AN NANIIAN

/ 7
—

L~

e

N
N

INSULATION /V TO VACUUM
- DIFFUSION PUMP

TO HIGH VOLTAGE

Figure 10. Schematic Cross Section of Two-Plate Electrostatic
Loading Apparatus.

-57-




Figure 11. Vacuum System with Two-Plate
Electrostatic Loading System

Figure 12. Confirmation of Rapid Loading of
Specimen. Charging Current vs
Time (50 microseconds per
division) shows 45 Microsecond
Time Constant
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Figure 13.

Low-Inertia, Pressure-Actuated
Axial Loading System Shown at the
Top of a Buckled Cylindrical Shell.
Vertical Rods are for Limiting The
Extent of Collapse and for Limiting
Specimen Cap When Vacuum
Belljar is Inplace

-59-




segyey Suipeor] jua iyl e uswidadg oy Surpeoj-sanssaid A1[ed13e3s0I3DS[H I0F INDIALD

RVANRNS

4INNI NO WANIWN1Y

@aLlsOdia WNNOVA HLIM
NIWIDIdS IVIAW —,

NIWID3dS ONIDYVHOSIA
JO4 S3 4334

"§1 2andtg

3010313 ﬁ_zz_N s
ALIDVAVD
ONI¥IM
ONIANTONI
3d 69¥
| L M™os
OIW 0013 AW SE0
~ 0g-0
A1ddNs
*>°d
I19VI4VA

AAA

A\ A A4

OINW 9

/OZ.Uz«FmE IN3AIYd Ol 13FHS IVIAW

aoy AL1DNT ONOT A9 Q3LVIIdO HOLIMS

/OZ_D<O._ NIWID3dS ONRING INVISNOD IWIL

ONITIOULNOD Y04 S DIW 1Z 3O D9IW L°0

«-60=




usw1dadg uo 2INSSaIJ O118)S0a}091 BuUlIB[IOSQO U® JUIdNPOIJ IOI JINII1D

‘g1 2anBig
d 6ye
AWV NEDR)
Aed L1VM 00¢ 9IS
[ T_ HSOLNI2W
3dOOS | 93wol 3 ;I | ¥3Law
YOLINOW {1 ! 110A I L
'Y YIWIOASN WY
| G - L:062
Q4w Z1°0
L X
OIN 06 S -
_ A 0€-0
. A1ddNS
9IWZ'ZZ *D°a 19 VIIVA
S L4 AN

-61-



